1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
| close all clear %% 1
%The signal in MATLAB is a discrete signal, and the sinusoidal signal is a continuous signal, so it needs to be sampled to discretize it. %MATLAB中的信号为离散信号,而正弦信号为 连续信号,所以需要 采样 将其 离散化。
%正弦信号频率分之一是一个周期,采样频率是总的宽度,采样个数是第二个图的幅值。 %当输入信号关于中心对称的时候 IFFT结果为纯的实数,共轭对称,Conjugate symmetry %When the input signal is symmetrical about the center, the IFFT result is a pure real number. %实部乘2,虚部抵消 %Real part is multiplied by 2, imaginary part is cancelled
figure(); title("sine"); tiledlayout(4,2); fs = 100; X = linspace(0, 2* pi, fs); %生成线性间距向量
Y0 = sin((X + 0) * 1); %f=1, p=0 nexttile; plot(X,Y0); title("f=1, p=0");
%幅度和相位和ifft nexttile; Yfft = fft(Y0); Yfft_abs = abs(Yfft); L_abs = length(Yfft_abs); %Yfft_abs = abs(Yfft_abs / L_abs); %最大是0-1 Yfft_abs_single = Yfft_abs(1:fix(L_abs/2)+1); %fix == 朝零四舍五入 %Yfft_abs_single(2:end-1) = 2*Yfft_abs_single(2:end-1); %0-1之后除以2了,所以要乘2 FX0=(0:length(Yfft_abs_single)-1); %m=length(Yfft_abs); %plot((0:m/2-1)'*fs/m, Yfft_abs(1:m/2)); plot(FX0,Yfft_abs_single); title("mag"); nexttile; Yfft_phase = angle(Yfft); L_phase=length(Yfft_phase); Yfft_phase_single=Yfft_phase(1:fix(L_phase/2)+1); %Yfft_phase_single(2:end-1)=2*Yfft_phase_single(2:end-1); %首尾相连 plot(FX0,Yfft_phase_single); title("phase"); nexttile; Y_ifft = ifft(Yfft); plot(X,Y_ifft); title("ifft");
%改变频率 Y1 = sin((X + 0) * 10); %f=1, p=0 nexttile; plot(X,Y1); title("f=10, p=0");
%幅度和相位和ifft nexttile; Yfft = fft(Y1); Yfft_abs = abs(Yfft); L_abs = length(Yfft_abs); %Yfft_abs = abs(Yfft_abs / L_abs); %最大是0-1 Yfft_abs_single = Yfft_abs(1:fix(L_abs/2)+1); %fix == 朝零四舍五入 %Yfft_abs_single(2:end-1) = 2*Yfft_abs_single(2:end-1); FX0=(0:length(Yfft_abs_single)-1); %m=length(Yfft_abs); %plot((0:m/2-1)'*fs/m, Yfft_abs(1:m/2)); plot(FX0,Yfft_abs_single); title("mag"); nexttile; Yfft_phase = angle(Yfft); L_phase=length(Yfft_phase); Yfft_phase_single=Yfft_phase(1:fix(L_phase/2)+1); %Yfft_phase_single(2:end-1)=2*Yfft_phase_single(2:end-1); %首尾相连 plot(FX0,Yfft_phase_single); title("phase"); nexttile; Y_ifft = ifft(Yfft); plot(X,Y_ifft); title("ifft"); %% B.3 % a) cos
figure(); title("cos"); tiledlayout(4,2); fs = 100; X = linspace(0, 2* pi, fs); %生成线性间距向量
Y0 = cos((X + 0) * 1); %f=1, p=0 nexttile; plot(X,Y0); title("f=1, p=0");
%幅度和相位和ifft nexttile; Yfft = fft(Y0); Yfft_abs = abs(Yfft); L_abs = length(Yfft_abs); %Yfft_abs = abs(Yfft_abs / L_abs); %最大是0-1 Yfft_abs_single = Yfft_abs(1:fix(L_abs/2)+1); %fix == 朝零四舍五入 %Yfft_abs_single(2:end-1) = 2*Yfft_abs_single(2:end-1); %0-1之后除以2了,所以要乘2 FX0=(0:length(Yfft_abs_single)-1); %m=length(Yfft_abs); %plot((0:m/2-1)'*fs/m, Yfft_abs(1:m/2)); plot(FX0,Yfft_abs_single); title("mag"); nexttile; Yfft_phase = angle(Yfft); L_phase=length(Yfft_phase); Yfft_phase_single=Yfft_phase(1:fix(L_phase/2)+1); %Yfft_phase_single(2:end-1)=2*Yfft_phase_single(2:end-1); %首尾相连 plot(FX0,Yfft_phase_single); title("phase"); nexttile; Y_ifft = ifft(Yfft); plot(X,Y_ifft); title("ifft");
%改变频率 Y1 = cos((X + 0) * 10); %f=1, p=0 nexttile; plot(X,Y1); title("f=10, p=0");
%幅度和相位和ifft nexttile; Yfft = fft(Y1); Yfft_abs = abs(Yfft); L_abs = length(Yfft_abs); %Yfft_abs = abs(Yfft_abs / L_abs); %最大是0-1 Yfft_abs_single = Yfft_abs(1:fix(L_abs/2)+1); %fix == 朝零四舍五入 %Yfft_abs_single(2:end-1) = 2*Yfft_abs_single(2:end-1); FX0=(0:length(Yfft_abs_single)-1); %m=length(Yfft_abs); %plot((0:m/2-1)'*fs/m, Yfft_abs(1:m/2)); plot(FX0,Yfft_abs_single); title("mag"); nexttile; Yfft_phase = angle(Yfft); L_phase=length(Yfft_phase); Yfft_phase_single=Yfft_phase(1:fix(L_phase/2)+1); %Yfft_phase_single(2:end-1)=2*Yfft_phase_single(2:end-1); %首尾相连 plot(FX0,Yfft_phase_single); title("phase"); nexttile; Y_ifft = ifft(Yfft); plot(X,Y_ifft); title("ifft");
% b) Unit Step figure(); title("unit step"); tiledlayout(2,2); X = (-1:0.01:1)'; unitstep = X>=0; nexttile; plot(X,unitstep); title("unitstep"); nexttile; Yfft = fft(unitstep); Yfft_abs = abs(Yfft); L_abs = length(Yfft_abs); %Yfft_abs = abs(Yfft_abs / L_abs); %最大是0-1 Yfft_abs_single = Yfft_abs(1:fix(L_abs/2)+1); %fix == 朝零四舍五入 %Yfft_abs_single(2:end-1) = 2*Yfft_abs_single(2:end-1); %0-1之后除以2了,所以要乘2 FX0=(0:length(Yfft_abs_single)-1); %m=length(Yfft_abs); %plot((0:m/2-1)'*fs/m, Yfft_abs(1:m/2)); plot(FX0,Yfft_abs_single); title("mag"); nexttile; Yfft_phase = angle(Yfft); L_phase=length(Yfft_phase); Yfft_phase_single=Yfft_phase(1:fix(L_phase/2)+1); %Yfft_phase_single(2:end-1)=2*Yfft_phase_single(2:end-1); %首尾相连 plot(FX0,Yfft_phase_single); title("phase"); nexttile; Y_ifft = ifft(Yfft); plot(X,Y_ifft); title("ifft");
% c) Impulse figure(); title("impulse"); tiledlayout(2,2); %t = (-1:0.001:1)'; impulse = X==0; nexttile; plot(X,impulse); title("impulse"); nexttile; Yfft = fft(impulse); Yfft_abs = abs(Yfft); L_abs = length(Yfft_abs); %Yfft_abs = abs(Yfft_abs / L_abs); %最大是0-1 Yfft_abs_single = Yfft_abs(1:fix(L_abs/2)+1); %fix == 朝零四舍五入 %Yfft_abs_single(2:end-1) = 2*Yfft_abs_single(2:end-1); %0-1之后除以2了,所以要乘2 FX0=(0:length(Yfft_abs_single)-1); %m=length(Yfft_abs); %plot((0:m/2-1)'*fs/m, Yfft_abs(1:m/2)); plot(FX0,Yfft_abs_single); title("mag"); nexttile; Yfft_phase = angle(Yfft); L_phase=length(Yfft_phase); Yfft_phase_single=Yfft_phase(1:fix(L_phase/2)+1); %Yfft_phase_single(2:end-1)=2*Yfft_phase_single(2:end-1); %首尾相连 plot(FX0,Yfft_phase_single); title("phase"); nexttile; Y_ifft = ifft(Yfft); plot(X,Y_ifft); title("ifft"); %% B.4
figure(); tiledlayout(2,2); phase = pi/2; f = 1; %周期等于Π除以f sample_f = 0.1; xs = 0:sample_f:2*pi; ys = 0:sample_f:2*pi; [X, Y] = meshgrid(xs, ys); XY = Y*cos(phase) + X*sin(phase); Z = sin(2*XY*f); nexttile; plot3(X, Y, Z); title("sine wave"); fz=fft2(Z); fz_abs=abs(fz); nexttile; mesh(fz_abs); title("mag without shift"); fz_shift=fftshift(fz); fz_shift_abs=abs(fz_shift); nexttile; title("mag"); mesh(fz_shift_abs); nexttile; ang=angle(fz_shift); %mesh(ang); %直接mesh不好看 surf0 = surf(X,Y,ang); title('phase after shift') colormap gray set(surf0, 'edgecolor', 'none') %如果没有这个颜色会变浅或深 view(2) %2D视图 pbaspect([1, 1, 1]);
figure(); tiledlayout(2,2); phase = pi/2; f = 2; %周期等于Π除以f sample_f = 0.1; xs = 0:sample_f:2*pi; ys = 0:sample_f:2*pi; [X, Y] = meshgrid(xs, ys); XY = Y*cos(phase) + X*sin(phase); Z = sin(5*XY); nexttile; plot3(X, Y, Z); title("sine wave"); fz=fft2(Z); fz_abs=abs(fz); nexttile; mesh(fz_abs); title("mag without shift"); fz_shift=fftshift(fz); fz_shift_abs=abs(fz_shift); nexttile; title("mag"); mesh(fz_shift_abs); nexttile; ang=angle(fz_shift); %mesh(ang); %直接mesh不好看 surf0 = surf(X,Y,ang); title('phase after shift') colormap gray set(surf0, 'edgecolor', 'none') %如果没有这个颜色会变浅或深 view(2) %2D视图 pbaspect([1, 1, 1]); %% B.5
% Box Function figure(); tiledlayout(2,2); y = 150; x = 150; rx = 8; ry = 8; [X, Y] = meshgrid(1:1:x, 1:1:y); Z = zeros([x, y]); %平面是0 x1 = (size(Z, 1) / 2 - rx):(size(Z, 1) / 2 + rx); %size是获取行数和列数 y1 = (size(Z, 2) / 2 - ry):(size(Z, 2) / 2 + ry); Z(x1, y1) = 1; %高的地方是1 nexttile; plot3(X, Y, Z); title("box function"); fz=fft2(Z); fz_abs=abs(fz); nexttile; mesh(fz_abs); title("mag without shift"); fz_shift=fftshift(fz); fz_shift_abs=abs(fz_shift); nexttile; mesh(fz_shift_abs); title("mag"); nexttile; ang=angle(fz_shift); mesh(ang); %直接mesh不好看
%surf0 = surf(X,Y,ang); %title('phase after shift') %colormap gray; %set(surf0, 'edgecolor', 'none') %如果没有这个颜色会变浅或深 %view(2) %2D视图 %pbaspect([1, 1, 1]);
% Gaussian Function figure(); tiledlayout(2,2); Z = fspecial('gaussian', 100, 10); %[X, Y] = meshgrid(1:1:size(Z, 1), 1:1:size(Z, 2)); nexttile; %plot3(X, Y, Z); mesh(Z); title("sine wave"); fz=fft2(Z); fz_abs=abs(fz); nexttile; mesh(fz_abs); title("mag without shift"); fz_shift=fftshift(fz); fz_shift_abs=abs(fz_shift); nexttile; mesh(fz_shift_abs); title("mag"); nexttile; ang=angle(fz_shift);
mesh(ang); %直接mesh不好看
%surf0 = surf(X,Y,ang); %title('phase after shift') %colormap gray; %set(surf0, 'edgecolor', 'none') %如果没有这个颜色会变浅或深 %view(2) %2D视图 %pbaspect([1, 1, 1]); %% B.6
figure(); tiledlayout(2,3); A = imread('C:\Users\Yuhang\Documents\UoS\Image processing\Lab\LenaG.bmp'); nexttile; imshow(A,[]); title('original/space domain'); F=fft2(double(A));%将矩阵转化为double型后进行二维傅里叶变换,图像计算中很多处理不能用整型 F_mag = abs(F); F_phase_without_shift = angle(F); F_mag_output=log(1+F_mag);%加对数以便于显示图像,为了更好地显示细节,不进行log变换的话灰度的动态范围被压缩
nexttile; imshow(F_mag_output,[]);%根据 C 中像素值的范围缩放显示.使用 [min(C(:))max(C(:))] 作为显示范围。 imshow 将 C 中的最小值显示为黑色,将最大值显示为白色。使用imshow(A,[]),即可把图像矩阵A显示为正常的灰度图像。本来A是0-1,把double拉伸到[0 255] title('spectrum magnitude without shift'); nexttile; imshow(F_phase_without_shift,[]); title('phase without shift');
F_shift=fftshift(F);%fftshift将傅里叶变换的零频率成分移到频谱中心,因为fft2变换中,信号的零频率成分在信号左上角。 F_mag_shift=log(1+abs(F_shift)); F_phase_shift=angle(F_shift); nexttile; imshow(F_mag_shift,[]); title('spectrum magnitude with shift'); nexttile; imshow(F_phase_shift,[]); title('phase with shift'); %% B.7
figure(); tiledlayout(2,3); A = imread('C:\Users\Yuhang\Documents\UoS\Image processing\Lab\LenaG.bmp'); nexttile; imshow(A,[]); title('original/space domain'); F=fft2(double(A));%将矩阵转化为double型后进行二维傅里叶变换,图像计算中很多处理不能用整型 F_mag = abs(F); F_phase_without_shift = angle(F); F_mag_output=log(1+F_mag);%加对数以便于显示图像,为了更好地显示细节,不进行log变换的话灰度的动态范围被压缩
nexttile; imshow(F_mag_output,[]);%[]和mat2gray一个意思,根据 C 中像素值的范围缩放显示.使用 [min(C(:))max(C(:))] 作为显示范围。 imshow 将 C 中的最小值显示为黑色,将最大值显示为白色。使用imshow(A,[]),即可把图像矩阵A显示为正常的灰度图像。本来A是0-1,把double拉伸到[0 255] title('spectrum magnitude without shift'); nexttile; imshow(F_phase_without_shift,[]); title('phase without shift');
F_shift=fftshift(F);%fftshift将傅里叶变换的零频率成分移到频谱中心,因为fft2变换中,信号的零频率成分在信号左上角。 F_mag_shift=log(1+abs(F_shift)); F_phase_shift=angle(F_shift); nexttile; imshow(F_mag_shift,[]); title('spectrum magnitude with shift'); nexttile; imshow(F_phase_shift,[]); title('phase with shift');
nexttile; F_ifft = ifft2(F); imshow(F_ifft,[]); title("image after ifft");
%虚部代表相位延后90度即时间延后四分之一个周期
%实部乘2,虚部抵消 %Real part is multiplied by 2, imaginary part is cancelled %% B.8
figure(); tiledlayout(2,2); A = imread('C:\Users\Yuhang\Documents\UoS\Image processing\Lab\LenaG.bmp'); nexttile; imshow(A,[]); title('original/space domain'); F=fft2(double(A));%将矩阵转化为double型后进行二维傅里叶变换,图像计算中很多处理不能用整型 F_mag = abs(F); F_phase = angle(F);
nexttile; F_ifft = ifft2(F); imshow(F_ifft,[]); title("image after ifft");
%New part phase0= F_phase .* 0; F_phase0=F_mag .* cos(phase0) + F_mag .* sin(phase0) .* 1i; F_phase0_ifft2=log((abs(ifft2(F_phase0)))); nexttile; imshow(F_phase0_ifft2,[]); title("all phase == 0, without shift");
nexttile; %imshow(mat2gray(log(fftshift(bmp_img_inv_zero_phase)))) imshow(log(fftshift(ifft2(F_mag))),[]); % []和mat2gray:归一化,让每个元素的值都在0和1之间 title("2nd way but with shift");
% and the phase determines the position information.
%% B.9
figure(); tiledlayout(2,2); A = imread('C:\Users\Yuhang\Documents\UoS\Image processing\Lab\LenaG.bmp'); nexttile; imshow(A,[]); title('original/space domain'); F=fft2(double(A));%将矩阵转化为double型后进行二维傅里叶变换,图像计算中很多处理不能用整型 F_mag = abs(F); F_phase = angle(F);
nexttile; F_ifft = ifft2(F); imshow(F_ifft,[]); title("image after ifft");
%New part mag1= F_mag ./ F_mag; %mag1 = max(abs(F), [], 'all'); %max查找最大值 F_mag1=mag1 .* cos(F_phase) + mag1 .* sin(F_phase) .* 1i; F_mag1_ifft2=((ifft2(F_mag1))); nexttile; imshow(mat2gray(real(F_mag1_ifft2))); %mat2gray必须对实数操作,而且,必须显示实数,有虚数可能是因为误差。 title("unit mag");
%The amplitude in the space determines the intensity information,so the contour can be seen. %% B.10;
figure(); tiledlayout(2,3); A = imread('C:\Users\Yuhang\Documents\UoS\Image processing\Lab\LenaG.bmp');
%A=rot90(A); %应该用哪一个呢? A=A';
nexttile; imshow(A,[]); title('original/space domain'); F=fft2(double(A));%将矩阵转化为double型后进行二维傅里叶变换,图像计算中很多处理不能用整型 F_mag = abs(F); F_phase_without_shift = angle(F); F_mag_output=log(1+F_mag);%加对数以便于显示图像,为了更好地显示细节,不进行log变换的话灰度的动态范围被压缩
nexttile; imshow(F_mag_output,[]);%根据 C 中像素值的范围缩放显示.使用 [min(C(:))max(C(:))] 作为显示范围。 imshow 将 C 中的最小值显示为黑色,将最大值显示为白色。使用imshow(A,[]),即可把图像矩阵A显示为正常的灰度图像。本来A是0-1,把double拉伸到[0 255] title('spectrum magnitude without shift'); nexttile; imshow(F_phase_without_shift,[]); title('phase without shift');
F_shift=fftshift(F);%fftshift将傅里叶变换的零频率成分移到频谱中心,因为fft2变换中,信号的零频率成分在信号左上角。 F_mag_shift=log(1+abs(F_shift)); F_phase_shift=angle(F_shift); nexttile; imshow(F_mag_shift,[]); title('spectrum magnitude with shift'); nexttile; imshow(F_phase_shift,[]); title('phase with shift');
%When the original image is rotated, the Fourier transform will also rotate. %The decomposition to the spatial frequency reflects the orientation of the features in the image, so the Fourier transform has orientation dependence
|